ОБЩЕЕ ОПИСАНИЕ И РАБОТА СИСТЕМЫ
Система зажигания не использует обычный распределитель и катушку. Она использует выходные сигналы датчика положения коленчатого вала на контроллер ЭСУД. Контроллер ЭСУД определяет электронную регулировку момента зажигания и включает катушку системы зажигания.
Этот тип системы зажигания без распределителя использует метод распределения "отработанной искры". Каждый цилиндр спарен с противоположным цилиндром (1-4 или 2-3). Зажигание происходит одновременно в цилиндре, поднимающемся в такте сжатия, и в цилиндре, опускающемся в такте выпуска. Цилиндр в такте выпуска требует очень мало имеющейся энергии для зажигания свечи. Остальная энергия предоставляется свече зажигания в цилиндре, находящемся в такте сжатия.
Эти системы используют сигнал EST от контроллера ЭСУД для управления регулировки момента зажигания. Контроллер ЭСУД использует следующую информацию:
- Нагрузка на двигатель (давление или разряжение коллектора).
- Атмосферное (барометрическое) давление.
- Температура двигателя.
- Температура впускного воздуха.
- Положение коленчатого вала.
- Обороты двигателя (об/мин)
Катушка электронной системы зажигания одновременно подает искру на две свечи зажигания. Катушка электронной системы зажигания не обслуживается и заменяется как единый узел.
Непосредственная система зажигания использует индуктивный датчик положения коленчатого вала. Этот датчик заходит через свое крепление примерно на 0.05 inch (1.3 мм) в импульсный датчик коленчатого вала. Импульсный датчик - это специальное колесо, установленное на коленчатый вал или шкив коленчатого вала, имеющее 58 щелей, 57 из которых расположены в интервале 6 градусов. Последняя щель шире и служит для генерации "синхронизирующего импульса". При вращении коленчатого вала щели в импульсном датчике изменяют магнитное поле датчика, создавая индуктивный импульс. Длинный импульс 58-ой щели отображает специфическую ориентацию коленчатого вала и позволяет контроллеру ЭСУД постоянно определять ориентацию коленчатого вала. Контроллер ЭСУД использует эту информацию для генерации импульсов угла опережения зажигания и впрыска топлива, которые он посылает на катушки зажигания и топливные форсунки.
Датчик положения распределительного вала посылает сигнал на контроллер ЭСУД. Контроллер ЭСУД использует этот сигнал как "синхронизационный импульс" для открытия топливных форсунок в необходимой последовательности. Контроллер ЭСУД использует сигнал датчика положения распределительного вала для определения положения поршня №1 во время рабочего такта. Это позволяет контроллеру ЭСУД рассчитывать правильный режим последовательного впрыска топлива. Если контроллер ЭСУД определяет неверный сигнал датчика положения распределительного вала при работающем двигателе, то устанавливается DTC P0341. Если сигнал датчика положения распределительного вала теряется при работающем двигателе, система впрыска топлива перейдет в режим последовательного впрыска, основанный на последнем импульсе, и двигатель будет продолжать работать. Пока неисправность присутствует, двигатель может быть перезапущен. Он будет работать в расчетном режиме последовательного впрыска с вероятностью правильной последовательности форсунок 1 к 6.
Работа регулятора холостого хода контролируется основными настройками холостого хода корпуса дроссельной заслонки и клапаном регулировки холостого хода.
Контроллер ЭСУД использует клапан регулировки холостого хода, чтобы регулировать частоту вращения на холостом ходу в зависимости от условий. Контроллер ЭСУД использует информацию различных входных сигналов, как, например, температура охлаждающей жидкости, разрежение коллектора и т.д. для эффективного управления частотой вращения на холостом ходу.
Функцией системы дозирования топлива является подача нужного количества топлива в двигатель в разных режимах работы. Топливо подается в двигатель отдельными топливными форсунками, смонтированными во впускном коллекторе рядом с каждым цилиндром.
Главными датчиками, управляющими подачей топлива, являются датчик абсолютного давления в коллекторе, управляющий датчик кислорода (HO2S1) и диагностический датчик кислорода (HO2S2).
Датчик абсолютного давления в коллекторе измеряет разряжение во впускном коллекторе. При высокой потребности в топливе датчик считывает низкое разряжение, как, например, при полностью открытой заслонке. Контроллер ЭСУД использует эту информацию для обогащения смеси, увеличивая, таким образом, время работы форсунки и подавая необходимое количество топлива. При замедлении разрежение увеличивается. Изменение разряжения определяется датчиком абсолютного давления и считывается контроллером ЭСУД, который затем уменьшает время работы форсунки из-за уменьшившейся потребности в топливе.
Датчик HOS2 расположен в выпускном коллекторе. Датчик HO2S определяет для контроллера ЭСУД количество кислорода в отработавших газах, и контроллер ЭСУД изменяет коэффициент воздух/топливо для двигателя, управляя топливными форсунками. Наилучший коэффициент воздух/топлива для уменьшения токсичности отработавших газов - 14,7 к 1, который позволяет каталитическому нейтрализатору работать наиболее эффективно. Из-за постоянного измерения и регулировки коэффициента воздух/топливо система впрыска топлива называется системой "закрытого контура".
Контроллер ЭСУД использует выходные сигналы различных датчиков для определения необходимого для двигателя количества топлива. Топливо подается при различных условиях, называемых "режимами".
Когда зажигание включено, контроллер ЭСУД включает реле топливного насоса на две секунды. Топливный насос увеличивает давления топлива. Контроллер ЭСУД также проверяет датчик температуры охлаждающей жидкости двигателя (ЕСТ) и датчик положения дроссельной заслонки (TP) и определяет коэффициент воздух/топливо, необходимый для запуска двигателя. Он составляет от 1,5 к 1 при -97°F (-36°C) температуры охлаждающей жидкости до 14,7 к 1 при 201 °F (94 °С) температуры охлаждающей жидкости. Контроллер ЭСУД управляет количеством топлива, подаваемого в стартовом режиме, изменяя длительность включения и выключения топливной форсунки. Это делается "пульсацией" топливных форсунок на очень короткое время.
Если двигатель заливается излишним топливом, его можно продуть, полностью выжав педаль акселератора. Контроллер ЭСУД полностью отключить подачу топлива, исключив все сигналы на инжекторы. Контроллер ЭСУД удерживает эту производительность, пока дроссельная заслонка остается полностью открытой и двигатель работает ниже примерно 400. Если положение дроссельной заслонки станет меньше примерно 80 процентов, контроллер ЭСУД вернется в стартовый режим.
Режим движения имеет два состояния, называемые "открытый контур" и "закрытый контур".
Если двигатель только что запустился, и его обороты выше 400 об/мин, система переходит в режим "открытого контура". В "открытом контуре" контроллер ЭСУД игнорирует сигнал от HO2S и рассчитывает коэффициент воздух/топливо на основе входящих сигналов датчика температуры охлаждающей жидкости и датчика абсолютного давления в коллекторе. Датчик остается в "закрытом контуре" до наступления следующих условий:
- Датчик HO2S подает неустойчивый выходной сигнал, показывая, что он слишком горячий, чтобы работать правильно.
- Температура датчика температуры охлаждающей жидкости выше установленной.
- Прошло определенное время после запуска двигателя.
Специальные значения вышеназванных условий изменяются от двигателя к двигателю и хранятся в электрически стираемом программируемом постоянном ЗУ (ЭСППЗУ). Когда эти условия наступают, система переходит в режим "закрытого контура". В "закрытом контуре" контроллер ЭСУД рассчитывает коэффициент воздух/топливо (время работы форсунки) на основе сигнала датчика кислорода. Это позволяет коэффициенту воздух/топливо оставаться очень близким к 14,7 к 1.
Контроллер ЭСУД реагирует на быстрые изменения в положении дроссельной заслонки и в потоке воздуха и подает дополнительное топливо.
Контроллер ЭСУД реагирует на изменения в положении дроссельной заслонки и в потоке воздуха и сокращает количество топлива. Если торможение очень быстрое, контроллер ЭСУД может отключить подачу топлива на короткое время.
Если напряжение аккумуляторной батареи низкое, контроллер ЭСУД может скомпенсировать слабую искру, подаваемую модулем зажигания, следующими способами:
- Увеличение длительности импульса топливной форсунки.
- Увеличение частоты вращения на холостом ходу.
- Увеличение времени задержки зажигания.
При отключенном зажигании топливные форсунки не подают топлива. Это предотвращает работу двигателя при выключенном зажигании. Топливо также не подается при отсутствии контрольных импульсов от центрального источника питания. Это предотвращает заливание.
Система улавливания паров бензина использует метод накопления в угольном фильтре. Этот метод позволяет направлять пары топлива от топливного бака к устройству хранения (фильтр) активированного угля для задерживания паров топлива, когда автомобиль не работает. Когда двигатель работает, пары топлива выдуваются с угольного элемента впускаемым воздухом и используются в обычном процессе сгорания.
Пары бензина из топливного бака направляются в патрубок с надписью TANK. Эти пары адсорбируются углем. Угольный фильтр продувается контроллером ЭСУД, когда двигатель проработал определенное время. Воздух подается в угольный фильтр и смешивается с парами. Смесь подается затем во впускной коллектор.
Контроллер ЭСУД подключает массу для включения электромагнитного клапана адсорбера СУПБ. Этот клапан управляется по длительности импульса (PWM) и включается и выключается несколько раз за секунду. Цикл продувки системы адсорбера СУПБ изменяется в соответствии с режимом работы, определяемым массовым расходом воздуха, корректировкой топливоподачи и температурой впускного воздуха.
Неустойчивый холостой ход, остановка двигателя, плохая управляемость могут быть вызваны следующими причинами:
- Неисправный электромагнитный клапан продувки адсорбера СУПБ.
- Поврежденный угольный фильтр.
- Шланги имеют трещины, повреждения или не подсоединены к нужным патрубкам.
Адсорбер СУПБ представляет собой устройство контроля токсичности, содержащее гранулы активированного угля. Адсорбер СУПБ используется для удерживания паров топлива из топливного бака. При наступлении определенных условий контроллер ЭСУД активирует электромагнитный клапан продувки адсорбера СУПБ, позволяя парам топлива поступать в цилиндры двигателя и сгорать там.
Работа системы принудительной вентиляции картера; Принцип работы системы принудительной вентиляции картера
Система принудительной вентиляции картера используется для полного использования паров картера. В картер подается свежий воздух от воздушного фильтра. Свежий воздух смешивается с просачивающимся газом, которые затем через вакуумный шланг поступают во впускной коллектор.
Шланги и хомуты осматривать регулярно. При необходимости заменить компоненты вентиляции картера.
Забитый или закрытый шланг ПВХ может вызвать следующие состояния:
- Неровный холостой ход
- Остановка двигателя или низкая частота вращения на холостом ходу
- Утечки масла
- Масло в воздушном фильтре
- Шлам в двигателе
Протекающий шланг ПВХ может вызвать следующие состояния:
- Неровный холостой ход
- Остановка двигателя
- Высокая частота вращения на холостом ходу
Датчик температуры охлаждающей жидкости двигателя (ECT) представляет собой термистор (резистор, изменяющий сопротивление в зависимости от температуры), установленный в потоке охлаждающей жидкости двигателя. Низкая температура охлаждающей жидкости вызывает высокое сопротивление (100000 Ом при -40°F [-40 °C]), а высокая температура служит причиной уменьшения сопротивления (70 Ом при 266 °F [130 °C]).
Контроллер ЭСУД подает 5 вольт на датчик температуры охлаждающей жидкости через резистор в ЭСУД и измеряет изменение в уровне сигнала. Уровень сигнала высокий на холодном двигателе и низкий на горячем. Измеряя изменение в уровне сигнала, контроллер ЭСУД может определить температуру охлаждающей жидкости. Температура охлаждающей жидкости влияет на большинство систем, управляемых контроллером ЭСУД. Неисправность в цепи датчика ЕСТ может вызвать установку диагностического кода неисправности Р0117 или Р0118. Следует помнить, что эти диагностические коды неисправностей отображают неисправность в цепи датчика ЕСТ, таким образом, правильное использование таблицы приведет либо к ремонту проводки, либо к замене датчика.
Датчик положения дроссельной заслонки является потенциометром, подключенным к валу корпуса дроссельной заслонки. Электрическая цепь датчика положения дроссельной заслонки состоит из провода питания 5 вольт и провода массы от контроллера ЭСУД. Контроллер ЭСУД рассчитывает положение дроссельной заслонки, отслеживая напряжение в этой сигнальной линии. Выходной сигнал датчика положения дроссельной заслонки изменяется с положением педали акселератора, меняя угол открытия дроссельной заслонки. В закрытом положении дроссельной заслонки выходной сигнал датчика положения дроссельной заслонки низкий, около 0,5 вольт. При открытии дроссельной заслонки, выходной сигнал увеличивается и при полностью открытой дроссельной заслонке выходной сигнал составляет около 5 вольт.
Контроллер ЭСУД может определить подачу топлива на основании угла открытия дроссельной заслонки (по команде водителя). Сломанный или плохо присоединенный датчик положения дроссельной заслонки может вызвать прерывистые вспышки топлива от форсунки и нестабильный холостой ход, так как контроллер ЭСУД предполагает, что заслонка движется. Проблема в любой цепи датчика положения дроссельной заслонки должна установить диагностический код неисправности Р0121 или Р0122. После установки DTC контроллер ЭСУД заменит значение по умолчанию для датчика дроссельной заслонки, и двигатель вернет некоторую мощность. DTC P0121 приводит к высокой частоте вращения на холостом ходу.
Трехходовые каталитические нейтрализаторы используются для контроля выброса углеводородов (НС), угарного газа и окисей азота (NOx). Катализатор внутри нейтрализаторов поддерживает химическую реакцию. Эта реакция окисляет НС и СО, присутствующие в отработавших газах и преобразует их в безвредные водяной пар и углекислый газ. Каталитический нейтрализатор также сокращает NOx, преобразуя его в азот. Контроллер ЭСУД отслеживает этот процесс, используя датчики HO2S1 и HO2S2. Эти датчики выдают сигнал, отображающий количество кислорода в отработавших газах, поступающих и покидающих трехходовой нейтрализатор. Это отражает способность нейтрализатора эффективно преобразовывать отработавшие газы. Если каталитический нейтрализатор работает эффективно, сигналы датчика HO2S1 будут более активны, чем сигналы датчика HO2S2. Датчики контроля эффективности нейтрализатора работают таким же образом, как и датчики, управляющие подачей топлива. Главной функцией этих датчиков является контроль эффективности нейтрализатора, но они также играют ограниченную роль в управлении подачей топлива. Если выходной сигнал датчика показывает напряжение смещения выше или ниже 450 мВ в течение продолжительного периода времени, контроллер ЭСУД слегка изменит корректировку топливоподачи, чтобы убедиться в том, что подача топлива правильна для контроля эффективности нейтрализатора.
Проблема с датчиком HO2S1 установит диагностические коды неисправности P0131 или P0132, в зависимости от специального условия. Проблема с сигналом датчика HO2S2 установит диагностические коды неисправности P0137, P0138 или P0140, в зависимости от специального условия.
Неисправность в электронагревателе диагностического датчика кислорода (HO2S2) или в его проводе питания или массы вызовет более низкий ответный сигнал датчика кислорода. Это может привести к неверным результатам диагностики контроля эффективности нейтрализатора.
Система рециркуляции отработавших газов используется на двигателях, оснащенных автоматической коробкой передач для снижения уровня выброса NOx (окисей азота), вызванного высокой температурой сгорания. Клапан рециркуляции отработавших газов управляется контроллером ЭСУД. Клапан рециркуляции отработавших газов подает небольшое количество отработавших газов во впускной коллектор для уменьшения температуры сгорания. Количество рециркулируемого отработавшего газа контролируется изменением противодавления в вакууме и на выходе газов При поступлении излишнего количества отработавших газов сгорание не происходит. По этой причине для прохождения через этот клапан впускается совсем небольшое количество отработавших газов, особенно на холостом ходу.
Клапан рециркуляции выхлопных газов обычно открыт в следующих случаях:
- Двигатель разогрелся.
- Выше частоты вращения на холостом ходу.
Слишком большой поток отработавших газов ослабляет сгорание, вызывая неровный ход или остановку двигателя. При слишком большом потоке отработавших газов на холостом ходу, в движении или на холодном двигателе могут быть следующие состояния:
- Двигатель останавливается после холодного запуска.
- Двигатель останавливается на холостом ходу после торможения.
- Двигатель производит хлопки во время движения.
- Неровный холостой ход.
Если клапан системы рециркуляции отработавших газов остается открытым все время, двигатель может не работать на холостом ходу. Слишком малый или слишком большой поток отработавших газов позволяет температуре сгорания подниматься слишком высоко во время ускорения и нагрузки. Это может вызвать следующие состояния:
- Детонационное сгорание (детонация)
- Перегрев двигателя
- Отказ проверки токсичности
Датчик температуры впускного воздуха представляет собой термистор - резистор, изменяющий сопротивление в зависимости от температуры воздуха, поступающего в двигатель. Низкая температура вызывает высокое сопротивление (4500 Ом при -40°F [-40 °C]), а высокая температура служит причиной уменьшения сопротивления (70 Ом при 266 °F [130 °C]).
Контроллер ЭСУД подает 5 вольт на датчик температуры впускного воздуха через резистор в контроллере ЭСУД и измеряет изменение в уровне сигнала для определения температуры впускного воздуха. Уровень сигнала высокий, когда воздух в коллекторе холодный, и низкий, когда воздух горячий. Контроллер ЭСУД получает информацию о температуре впускного воздуха, измеряя напряжение.
Датчик температуры впускного воздуха используется также для контроля момента зажигания, когда воздух в коллекторе холодный.
Неисправность в цепи датчика температуры впускного воздуха устанавливает диагностические коды неисправности Р0112 или Р0113.
Система управления приводом дроссельной заслонки (TAC) используется для улучшения показателей по выбросу вредных веществ, экономии топлива и улучшения общей характеристики управляемости. Система управления приводом дроссельной заслонки (TAC) устраняет механическую связь между педалью акселератора и дроссельной заслонкой. Система управления приводом дроссельной заслонки (TAC) устраняет потребность в системе автоматического регулирования скорости и в электродвигателе регулирования подачи воздуха на холостом ходу. Ниже приводится перечень компонентов системы управления приводом дроссельной заслонки (TAC):
- Педаль акселератора в сборе включает следующие компоненты:
- - Педаль акселератора.
- - Датчик положения педали акселератора (APP).
- - Датчик 2 APP.
- Корпус дроссельной заслонки в сборе включает следующие компоненты:
- Датчик 1 угла открытия дроссельной заслонки (TP).
- - Датчик 2 угла открытия дроссельной заслонки (TP).
- - Двигатель привода дроссельной заслонки.
- - Дроссельная заслонка.
- Контроллер ЭСУД.
Контроллер ЭСУД контролирует с помощью 2 датчиков APP требование водителя на ускорение. Диапазон изменения напряжения датчика 1 APP находится в интервале приблизительно 0.7-4.5 вольта, изменяясь по мере перемещения педали акселератора от исходного положения педали до положения педали, выжатой на полный ход. Диапазон датчика 2 APP находится в интервале приблизительно 0.3-2.2 вольта, изменяясь по мере перемещения педали акселератора от исходного положения педали до положения педали, выжатой на полный ход. Контроллер ЭСУД для того, чтобы выслать дроссельной заслонке команду занять определенное положение, обрабатывает эту информацию наряду с другими вводами датчика.
Дроссельной заслонкой управляет электродвигатель постоянного тока, называемый электродвигателем привода дроссельной заслонки. Контроллер ЭСУД может передвигать этот двигатель вперед или в обратном направлении, управляя напряжением аккумуляторной батареи и/или заземлением на 2-х встроенных драйверах. Дроссельная заслонка удерживается в исходном положении 5.7° датчика положения дроссельной заслонки (TPS) с помощью постоянной силы пружины возврата. Когда на двигатель привода дроссельной заслонки не подается ток, эта пружина удерживает дроссельную заслонку в исходном положении.
Контроллер ЭСУД контролирует угол дроссельной заслонки с помощью 2 датчиков TP. Диапазон изменения напряжения датчика 1 TP изменяется приблизительно от 0.7 до 4.3 вольта, когда дроссельная заслонка перемещается от 0 процентов до полностью открытой дроссельной заслонки (WOT). Диапазон изменения напряжения датчика 2 TP изменяется приблизительно от 4.3 до 0.7 вольта, когда дроссельная заслонка перемещается от 0 процентов до полностью открытой дроссельной заслонки (WOT).
Контроллер ЭСУД выполняет диагностику, которая проверяет уровни напряжения обоих датчиков APP, обоих датчиков TP и цепи двигателя привода дроссельной заслонки. Он также контролирует скорость обратного хода под действием обеих пружин возврата, которые размещены внутри корпуса дроссельной заслонки в сборе. Эти диагностики выполнены в разном временном масштабе, основываясь на том, работает двигатель или остановлен.
При каждом включении зажигания контроллер ЭСУД выполняет быстрый тест пружины возврата дроссельной заслонки, чтобы удостовериться, что дроссельная заслонка может вернуться в 7-процентное исходное положение из положения 0 процентов. Это должно гарантировать, что дроссельная заслонка может быть возвращена в исходное положение в случае неисправности цепи двигателя привода.
Датчик абсолютного давления в коллекторе (МАР) измеряет изменения давления во впускном коллекторе, связанные с изменением нагрузки на двигатель и изменением частоты вращения. Он преобразует их в выходной сигнал.
Закрытая дроссельная заслонка при движении по инерции производит относительно низкий сигнал абсолютного давления в коллекторе. Абсолютное давление является противоположностью разряжению. Когда давление в коллекторе высокое, разряжение низкое. Датчик абсолютного давления в коллекторе также используется для измерения барометрического давления. Оно выполняется как часть расчетов датчика абсолютного давления в коллекторе. При включенном зажигании и отключенном двигателе контроллер ЭСУД считывает давление в коллекторе как барометрическое давление и подстраивает коэффициент воздух/топливо соответствующим образом. Компенсация по высоте позволяет системе сохранять мощность при низких значениях токсичности. Барометрическая функция периодически обновляется во время езды с постоянной скоростью или при полностью открытой дроссельной заслонке. В случае неисправности в барометрической части датчика абсолютного давления в коллекторе, контроллер ЭСУД устанавливает значение по умолчанию.
Неисправность в цепи датчика абсолютного давления в коллекторе устанавливает диагностические коды неисправности Р0107 или Р0108.
Следующая таблица показывает разницу между абсолютным давлением и вакуумом относительно выходного сигнала датчика МАР, который приведен в верхней строке обеих таблиц.
MAP
вольт
|
4.9
|
4.4
|
3.8
|
3.3
|
2.7
|
2.2
|
1.7
|
1.1
|
0.6
|
0.3
|
0.3
|
кПа
|
100
|
90
|
80
|
70
|
60
|
50
|
40
|
30
|
20
|
10
|
0
|
in. Hg
|
29.6
|
26.6
|
23.7
|
20,7
|
17.7
|
14.8
|
11.8
|
8,9
|
5.9
|
2.9
|
0
|
ВАКУУМ
вольт
|
4.9
|
4.4
|
3.8
|
3.3
|
2.7
|
2.2
|
1.7
|
1.1
|
0.6
|
0.3
|
0.3
|
кПа
|
0
|
10
|
20
|
30
|
40
|
50
|
60
|
70
|
80
|
90
|
100
|
in. Hg
|
0
|
2.9
|
5.9
|
8,9
|
11.8
|
14.8
|
17..7
|
20,7
|
23.7
|
26.7
|
29.6
|
Контроллер ЭСУД, расположенный внутри защитной панели на стороне пассажира, является центром управления системы впрыска топлива. Она постоянно отслеживает информацию от различных датчиков и управляет системами, которые влияют на работу автомобиля. ЭСУД также осуществляет функции диагностики системы. Он может распознавать проблемы в работе, оповещать водителя посредством контрольной лампы индикации (Check Engine), а также хранить диагностический код(ы) неисправности(ей), которые определяют проблемные зоны и помогают при проведении ремонта.
В контроллере ЭСУД нет ремонтируемых частей. Настройки хранятся в контроллере ЭСУД в программируемой постоянной памяти (ППЗУ).
Контроллер ЭСУД подает 5 или 12 вольт для питания датчиков или выключателей. Это делается с помощью резисторов в контроллере ЭСУД, сопротивление которых так высоко, что контрольная лампа не загорается при подключении к цепи. В некоторых случаях обычный имеющийся в продаже вольтметр не даст точное показание, потому что их сопротивление слишком низкое. Вам следует использовать цифровой вольтметр с входным сопротивлением 10 мегаом, чтобы получить точные показания. Контроллер ЭСУД контролирует выходные цепи, такие как топливные форсунки, клапан регулирования подачи воздуха на холостом ходу, реле муфты кондиционера, управляя цепью массы через транзисторы или устройство, называемое "четырехполосный драйвер".
Узел многопортового впрыска топлива (MFI) - устройство, управляемое электромагнитным клапаном от контроллера ЭСУД. Он направляет топливо под давлением к отдельному цилиндру. Контроллер ЭСУД подает питание на топливную форсунку или электромагнитный клапан до нормально закрытого состояния шарового или игольчатого клапана. Это позволяет топливу течь к верху форсунки, за шаровой или игольчатый клапан и через углубленную направляющую пластину к выходу форсунки.
Направляющая пластина имеет шесть отверстий, контролирующих поток топлива и образующих коническую форму распыла мелкокапельного топлива на насадке форсунки. Топливо с насадки направляется на впускной клапан, где оно распыляется и испаряется далее перед подачей в камеру сгорания. Частично открытая топливная форсунка приводит к падению давления топлива после остановки двигателя. Также на некоторых двигателях отмечается более длительное время запуска. Работа двигателя при выключенном зажигании также может быть вызвана возможностью подачи топлива.
Датчик детонации определяет ненормальную детонацию в двигателе. Датчик смонтирован в блоке цилиндров двигателя рядом с цилиндрами. Датчик выдает сигнал переменного тока, увеличивающийся с силой детонации. Этот сигнал посылается на контроллер ЭСУД. Контроллер ЭСУД регулирует момент зажигания для сокращения детонации.
Диагностика на основе стратегии - это единый подход к ремонту всех электрических/электронных (Е/Е) систем. Процесс диагностики всегда может быть использован для решения проблем электрической/электронной системы и является исходной точкой для ремонта. Следующие шаги дают мастеру указания по проведению диагностики:
- Убедиться в подтверждении жалобы клиента. Чтобы убедиться в подтверждении жалобы клиента, мастер должен быть знаком с нормальной работой системы.
- Провести предварительные проверки следующим образом:
- Провести тщательную визуальную проверку.
- Просмотреть архив проведенных ремонтов.
- Определить необычные звуки или запахи.
- Собрать информацию о диагностических кодах неисправности для обеспечения эффективного ремонта.
- Проверить бюллетени и другую сервисную информацию. Это включает в себя видео, информационные бюллетени и т.д.
- Посмотреть сервисную информацию (инструкцию) по проверке системы.
- См. сервисную диагностику.
Это состояние имеет место, когда автомобиль признается работающим нормально. Состояние, описанное клиентом, может быть нормальным. Убедиться в подтверждении жалобы клиента на основании другого нормально работающего автомобиля. Состояние может быть неустойчивым. Проверить жалобу в условиях, описанных клиентом, прежде чем выпустить автомобиль.
Перепроверить жалобу.
Если жалоба не может быть успешно найдена или локализована, необходима повторная оценка. Жалоба должна быть перепроверена и может быть непостоянной, как это определено в разделе "Непостоянные неисправности" или может быть нормальным условием.
После локализации причины следует провести ремонт. Убедиться в нормальной работе и в том, что симптом исправлен. Это может включать в себя ходовые испытание или другие методы, необходимые для подтверждения устранения проблемы при следующих условиях:
- Условия, указанные клиентом.
- Если был диагностирован код неисправности, проверить ремонт в тех же условиях, в которых был установлен диагностический код неисправности, как это зафиксировано в протоколах неисправностей и в данных записи состояния.
Проверка ремонта автомобиля будет более полной на автомобилях с системой диагностики. Выполняя ремонт, мастер должен выполнить следующие шаги:
Важно: Следовать указанным ниже шагам при проверке ремонта бортовой системы диагностики (OBD). Несоблюдение этих шагов может привести к ненужному ремонту.
- Просмотреть и записать протоколы неисправностей и данные записей состояния для диагностированных кодов неисправностей (данные записей состояния хранятся только для диагностики типа А или Е и только, если была запрошена контрольная лампа индикации неисправности).
- Очистить диагностические коды неисправностей.
- Совершить поездку в условиях, зафиксированных в протоколе неисправностей и данных записей состояния.
- Проверить информацию статуса DTC для кода неисправности, который был диагностирован при выполнении диагностической проверки этого DTC.
Основываясь на опыте работы бортовой системы диагностики (OBD) автомобилей года выпуска 1994 и 1995, был составлен список неавтомобильных неисправностей, которые могут повлиять на работоспособность системы OBD. Эти неавтомобильные неисправности зависят от условий окружающей среды и качества используемого топлива. С введением диагностики OBD для рынка легковых автомобилей и грузовых автомобилей малой грузоподъемности в 1996 году контрольная лампа индикации неисправности, загорающаяся от неавтомобильных неисправностей, может привести к неверной диагностике автомобиля, росту расходов на гарантийное обслуживание и неудовлетворенности клиентов. Следующий список неавтомобильных неисправностей не включает в себя все возможные неисправности и не применим в равной степени ко всем модельным линиям.
Качество топлива - не новая тема для автомобильной промышленности, но ее влияние на включение контрольной лампы индикации неисправности с системами OBD новое.
Топливные присадки, такие как "сухой газ" или "октановые корректоры" могут повлиять на характеристики топлива. Если это приводит к неполному или частичному сгоранию, то устанавливается DTC Р0300. Давление насыщенного пара может создать проблемы в топливной системе, особенно в осенний и весенний период с сильными перепадами температуры окружающей среды. Высокое давление насыщенного пара может выглядеть как DTC корректировки топливоподачи из-за чрезмерной нагрузки на угольный фильтр. Высокое давление пара в топливном баке может также повлиять на диагностику выделения паров топлива.
Использование топлива с несоответствующим октановым числом может вызвать проблемы с управляемостью. Многие крупные топливные компании рекламируют бензин марки "Premium" как способ улучшения эксплуатационных качеств вашего автомобиля. В большинстве марок "Premium" используется спирт для увеличения октанового числа. Хотя спиртовые присадки и увеличивают октановое число, способность к испарению при холодных температурах ухудшается. Это снижает пусковые свойства и рабочие характеристики холодного двигателя.
Низкий уровень топлива может привести к топливному голоданию, обеднению смеси и, возможно, к пропускам зажигания.
Вся диагностика OBD была настроена для работы с оригинальными (ОЕМ) узлами. Обычная ситуация - мощная система выпуска отработавших газов, воздействуя на противодавление, может влиять на работу клапана рециркуляции отработавших газов и включить, таким образом, контрольную лампу индикации неисправности. Небольшие утечки в системе выпуска отработавших газов рядом кислородным датчиком каталитического нейтрализатора также могут привести к включению контрольной лампы индикации неисправности.
Дополнительное электронное оборудование, такое как сотовые телефоны, музыкальные центры, противоугонные системы могут наводить электромагнитные помехи, будучи неправильно установленными. Это может вызвать ложные показания датчика и включить контрольную лампу индикации неисправности.
Временные состояния окружающей среды, такие как местные затопления, влияют на работу системы зажигания автомобиля. Если система зажигания попала под дождь, это может привести к пропускам зажигания и включению контрольной лампы индикации неисправности.
Транспортировка новых автомобилей со сборочного производства дилерам включает в себя не менее 60 циклов включения зажигания на протяжении 2 - 3 милей поездок. Такой вид езды способствует загрязнению свечей зажигания и приводит к включению контрольной лампы индикации неисправности и установке DTC P0300.
Чувствительность системы диагностики OBD приводит к включению контрольной лампы индикации неисправности, если автомобиль был ненадлежащим образом отремонтирован. Забитые воздушные и топливные фильтры, отложения в картере из-за малой циркуляции масла или ненадлежащей вязкости масла могут привести к неисправностям, которые не были обнаружены до проведения OBD. Плохое техническое обслуживание не может быть классифицировано как "неавтомобильная неисправность", но в связи с высокой чувствительностью диагностики OBD график технического обслуживания должен выполняться как можно более точно.
Диагностика пропусков зажигания измеряет небольшие изменения в скорости вращения коленчатого вала. Сильная вибрация карданного вала, вызванная чрезмерным загрязнением колес, может иметь такой же эффект для скорости вращения коленчатого вала, как и пропуск зажигания и может поэтому установить DTC Р0300.
Многие системы диагностики OBD могут не работать, если контроллер ЭСУД определяет неисправность в зависимой системе или компоненте. Например, если контроллер ЭСУД обнаружил пропуск зажигания, диагностика каталитического нейтрализатора будет приостановлена пока неисправность пропуска зажигания не будет устранена. Если неисправность пропуска зажигания достаточно значительна, каталитический нейтрализатор может быть поврежден из-за перегрева и не установит диагностический код неисправности каталитического нейтрализатора до устранения неисправности пропуска зажигания и завершения диагностики нейтрализатора. В этом случае клиенту придется дважды приехать на СТО для ремонта автомобиля.
Локальная сеть General Motors (GMLAN) автомобиля - семейство последовательных коммуникационных шин (подсетей), которые позволяют электронным контрольным устройствам (ECU или узлам) поддерживать связь друг с другом или с диагностическим тестером.
GMLAN поддерживает три шины, высокоскоростную двухпроводную шину, среднескоростную двухпроводную шину и однопроводную низкоскоростную шину.
- Высокоскоростная шина (500 кбит/с) - обычно применяется для совместного использования данных в режиме реального времени, типа заданный водителем вращающий момент, фактический вращающий момент двигателя, угол поворота и т.д.
- Среднескоростная шина (приблизительно 95.2 кбит/с) - обычно используется для информационной поддержки (отображение, навигация и т.д.), где время ответа системы требует, чтобы большое количество данных было передано за относительно короткое время, типа обновления отображения графической информации.
- Низкоскоростная шина (33.33 кбит/с) - обычно используется для управляемых водителем устройств, где требования на время ответа системы порядка 100-200 мс. Эта шина также поддерживает высокоскоростную операцию при 83.33 кбит/с, используемую только при перепрограммировании контроллера ECU.
Решение об использовании конкретной шины на данном транспортном средстве зависит от того, какие функции разделены среди различных контроллеров ECU на этом транспортном средстве.
Шины GMLAN используют коммуникационный протокол сети контроллеров (CAN). Данные запаковываются в сообщения CAN, которые сегментированы на "фреймы" CAN. Каждый фрейм CAN включает данные заголовка (также известного как идентификатор CAN, или CANId) и максимум восьми (8) байтов данных. Сообщение может состоять из отдельного фрейма или из множественных фреймов в зависимости от числа байтов данных, которые определяют полное сообщение. Арбитраж канала связи происходит только по заголовку, или CANId, части фрейма.
Диагностика - это последовательность шагов, результатом которых является отчет исполнительной программы об успешном или неуспешном проведении диагностики. Если диагностическая проверка пройдена, исполнительная программа диагностики фиксирует следующие данные:
- Диагностическая проверка после последнего цикла зажигания завершена.
- Диагностическая проверка прошла во время текущего цикла зажигания.
- Неисправность, определенная диагностической проверкой, сейчас не активна.
Если диагностическая проверка не пройдена, исполнительная программа диагностики фиксирует следующие данные:
- Диагностическая проверка после последнего цикла зажигания завершена.
- Неисправность, определенная диагностической проверкой, сейчас активна.
- Неисправность была активной во время этого цикла зажигания.
- Рабочие параметры во время появления неисправности.
Помните, что диагностический код неисправности корректировки топливоподачи может быть вызван списком автомобильных неисправностей. Использовать всю имеющуюся информацию (другие сохраненные диагностические коды неисправности, обедненная или обогащенная смесь) при диагностике неисправности корректировки топливоподачи.
Общая диагностика систем автомобиля требуется для контроля входных и выходных сигналов компонентов трансмиссии, связанных с контролем токсичности.
Входные компоненты контролируются на целостность цепи и наличие сигналов вне допустимого диапазона. Это включает проверку достоверности. Проверка достоверности определяет корректность сигнала, получаемого от датчика, т.е. Датчик положения дроссельной заслонки, показывающий высокое положение дроссельной заслонки при низкой нагрузке двигателя или низком сигнале датчика абсолютного давления в коллекторе. Входные компоненты могут включать в себя, но не ограничиваться следующими датчиками:
- Датчик скорости автомобиля (VSS)
- Датчик положения коленчатого вала (CKP)
- Датчик положения дроссельной заслонки (TP)
- Датчик температуры охлаждающей жидкости (ЕСT).
- Датчик положения распределительного вала (СМР).
- Датчик абсолютного давления в коллекторе (МАР).
В дополнение к целостности цепи и проверке достоверности, датчик температуры охлаждающей жидкости контролируется на способность достижения постоянной температуры для контроля топлива в закрытом контуре.
Выходные компоненты проверяются на правильность ответов на команды модуля управления. Компоненты, функциональная проверка которых не осуществима, контролируются на целостность цепи и наличие сигналов вне допустимого диапазона. Выходные компоненты могут включать в себя, но не ограничиваться следующими датчиками:
- Двигатель регулятора холостого хода.
- Электромагнитный клапан продувки адсорбера СУПБ, управляемый модулем управления.
- Реле кондиционера.
- Вентилятор системы охлаждения.
- Выход VSS.
- Управление контрольной лампы индикации неисправности.
См. "Контроллер ЭСУД" и датчики в этом разделе.
Пассивная диагностическая проверка просто проверяет системы и компоненты автомобиля. В отличие от нее, активная проверка совершает какие-то действия при осуществлении диагностических функций, часто в ответ на не прошедшую пассивную проверку. Например, активная диагностическая проверка рециркуляции отработавших газов заставляет клапан рециркуляции отработавших газов открываться при торможении с закрытой заслонкой и/или закрываться на равномерном ходу. Любое из этих действий должно приводить к изменению давления в коллекторе.
Это - любые бортовые проверки системой управления диагностики, которые могут влиять на рабочие характеристики или уровень токсичности автомобиля.
Цикл нагрева означает, что температура двигателя должна достичь минимум 160°F (70°С) и опуститься не менее чем на 72°F (22°С) за поездку.
Запись состояния (Freeze Frame) - это элемент системы управления диагностики, который сохраняет различную информацию об автомобиле на момент сохранения в памяти неисправности, связанной с контролем токсичности, и включения контрольной лампы индикации неисправности. Эти данные могут помочь определить причину неисправности.
Протокол неисправностей - усовершенствованная функция записи состояния OBD. Протокол неисправностей сохраняет ту же информацию, что и запись состояния, но она сохраняет информацию по любой неисправности в бортовой памяти, в то время когда протокол неисправностей хранит информацию только о неисправностях, связанных с контролем токсичности, активирующих контрольную лампу индикации неисправности.
Слово "диагностика" относится к любой бортовой проверке, проводимой системой управления диагностики автомобиля. Диагностика - это просто тестовый запуск системы или компонентов для определения их работы в соответствии с техническими характеристиками. Существует несколько диагностик, представленных в следующем списке:
- Пропуск зажигания
- Управляющий датчик кислорода (HO2S1)
- Диагностический датчик кислорода (HO2S2)
- Рециркуляция отработавших газов (EGR)
- Контроль эффективности нейтрализатора
Термин "критерии активизации" - технический термин, обозначающий условия, необходимые для запуска данной диагностической проверки. Каждая диагностика имеет специальный список условий, при выполнении которых запускается диагностика.
"Критерии активизации" - это, другими словами, "требуемые условия".
Критерии активизации для каждой диагностики перечислены на первой странице описания диагностических кодов неисправностей под заголовком "Условия установки кода неисправности". Критерии активизации разных диагностик отличаются друг от друга и, как правило, включают в себя следующее:
- Число оборотов двигателя
- Скорость автомобиля
- Температура охлаждающей жидкости (ЕСT)
- Абсолютное давление в коллекторе (МАР)
- Барометрическое давление (BARO)
- Температура впускного воздуха (IAT)
- Положение дроссельной заслонки (TP)
- Сильная продувка угольного фильтра
- Корректировка топливоподачи
- Кондиционер включен
Технически поездкой является цикл включения и выключения зажигания, в котором соблюдены критерии активизации данной диагностики, позволяющие ее провести. К сожалению, эта концепция не так проста. Поездка считается действительной, когда соблюдены все критерии активизации для данной диагностики Но, так как критерии активизации меняются от одной диагностики к другой, то и определение поездки меняется тоже. Некоторые диагностики работают только при рабочей температуре двигателя, некоторые - только после запуска двигателя, некоторые требуют постоянной скорости движения по магистрали, другие работают только на холостом ходу или при отключенной муфте гидротрансформатора. Некоторые работают только сразу после холодного запуска.
Таким образом, диагностика определяется как цикл включения и выключения зажигания, в котором автомобиль работал способом, удовлетворяющим критериям данной диагностики, и диагностика признает такой цикл одной поездкой. Однако другая диагностика с отличным набором критериев активизации (которые не были соблюдены) во время поездки не будет считать это поездкой. Поездка конкретной диагностике не состоится, если автомобиль работает не в соответствии со всеми критериями активизации.
Диагностические таблицы и функциональные проверки сделаны таким образом, чтобы найти неисправную цепь или компонент в процессе логических решений. Таблицы подготовлены с условием того, что автомобиль функционировал исправно на момент сборки, и различные неисправности отсутствовали.
Предусмотрена непрерывная диагностика определенных контрольных функций. Возможности диагностики дополнены диагностическими процедурами, содержащимися в этом руководстве. Языком передачи данных об источнике неисправности является система диагностических кодов неисправностей. При определении неисправности модулем управления, устанавливается диагностический код неисправности и загорается контрольная лампа индикации неисправности.
Контрольная лампа индикации неисправности загорается при строгом соблюдении набора условий, требуемых бортовой системой диагностики (OBD).
Обычно контрольная лампа индикации неисправности загорается, когда контроллер ЭСУД определяет диагностический код неисправности, сильно влияющий на токсичность автомобиля.
Контрольная лампа индикации неисправности управляется исполнительной программой диагностики. Контрольная лампа индикации неисправности загорается, если диагностическая проверка токсичности определяет наличие неисправности. Она продолжает гореть, пока система или компонент не пройдут ту же самую проверку в течение трех поездок без неисправностей в системе контроля токсичности.
Когда контрольная лампа индикации неисправности горит, исполнительная программа диагностики отключает ее после трех последовательных поездок с результатом "проверка пройдена" по диагностике, которая вызвала включение контрольной лампы индикации неисправности. Хотя контрольная лампа индикации неисправности и отключается, диагностический код неисправности сохраняется в памяти контроллера ЭСУД (как в записи состояния, так и в протоколе неисправностей) до завершения сорока (40) циклов нагрева без неисправностей.
Если контрольная лампа индикации неисправности была включена корректировкой топливоподачи или диагностическим кодом неисправности контроля токсичности, должны быть выполнены дополнительные требования. Требования, дополнительные к требованиям, описанным в предыдущих параграфах, таковы:
- Диагностические проверки должны пройти при 375 об/мин данных скорости вращения, сохраненных при последней неуспешной проверке.
- Плюс или минус десять процентов от нагрузки на двигатель, сохраненной при последней неуспешной проверке. Сходные температурные условия двигателя (нагретый или в процессе нагрева) с условиями, сохраненными при последней неуспешной проверке.
Соблюдение этих требований гарантирует, что неисправность, которая отображается контрольной лампой индикации неисправности, устранена.
Контрольная лампа индикации неисправности находится на панели приборов и имеет следующие функции:
- Она информирует водителя о неисправности, влияющей на уровень токсичности, и о необходимости срочной доставки автомобиля на станцию техобслуживания.
- Проверяя систему, контрольная лампа индикации неисправности загорается при включенном зажигании и не работающем двигателе. При запуске двигателя контрольная лампа индикации неисправности выключается.
- Если контрольная лампа индикации неисправности остается включенной при работающем двигателе, или есть подозрение на проблемы с работоспособностью автомобиля или проблемы токсичности, необходимо провести проверку бортовой системы диагностики OBD. Процедуры этих проверок даны в "Проверке системы OBD". Эти проверки могут выявить неисправности, не обнаруженные до этого другими диагностиками.
Средством обмена данными с модулем управления является колодка диагностики (DLC). Колодка диагностики используется для подключения сканирующего прибора. Некоторые примеры использования сканирующего прибора приведены ниже:
- Идентификация сохраненных диагностических кодов неисправности.
- Очистка диагностических кодов.
- Проведение проверок сигналов.
- Считывание последовательных данных.
Каждый диагностический код неисправности (DTC) непосредственно связан с диагностической проверкой. Система управления диагностикой устанавливает диагностические коды неисправности на основе непрохождения проверок во время поездки или поездок. Конкретные проверки требуют непрохождения подряд двух проверочных поездок, лишь после этого будет установлен диагностический код неисправности. Ниже рассмотрены три типа диагностических кодов неисправностей и приведены характеристики этих кодов:
- Связанные с выбросом вредных веществ.
- Контрольная лампа индикатора неисправности (MIL) загорается сразу же после возникновения неисправности.
- Контроллер записывает рабочие условия в момент определения неисправности. Эта информация сохраняется в буфере записей состояния и протоколах неисправностей.
- Сохраняется архив диагностических кодов неисправности.
- Контрольная лампа индикации неисправности отключается через три или четыре последовательных цикла езды, в которых диагностика не обнаружила неисправность.
- Архив диагностических кодов неисправности очищается через 40 последовательных циклов нагрева без неисправностей.
- Диагностический код неисправности может быть очищен сканирующим прибором.
- Отключение питания контроллера ЭСУД на 10 секунд.
- Связанные с выбросом вредных веществ.
- Контрольная лампа индикатора неисправности загорается после 3 подтвержденных циклов езды.
- Контроллер записывает рабочие условия в момент определения неисправности. Эта информация сохраняется в буфере записей состояния и протоколах неисправностей.
- Сохраняется архив диагностических кодов неисправности.
- Контрольная лампа индикации неисправности отключается через три или четыре последовательных цикла езды, в которых диагностика не обнаружила неисправность.
- Архив диагностических кодов неисправности очищается через 40 последовательных циклов нагрева без неисправностей.
- Диагностический код неисправности может быть очищен сканирующим прибором.
- Отключение питания контроллера ЭСУД на 10 секунд.
- Не связанные с выбросом вредных веществ.
- Как только происходит ошибка, загорается индикатор "В ближайшее время выполнить техническое обслуживание автомобиля" (SVS).
- Контроллер ЭСУД записывает рабочие условия в момент определения неисправностей. Эта информация сохраняется в протоколах неисправностей.
- Сохраняется архив диагностических кодов неисправности.
- Контрольная лампа SVS отключается после поездки, в которой диагностика не обнаружила неисправность.
- Архив диагностических кодов неисправностей очищается через 20 последовательных циклов нагрева без неисправностей.
- Диагностический код неисправности может быть очищен сканирующим прибором.
- Отключение питания контроллера ЭСУД более, чем на 10 секунд.
Важно: Может быть сохранено только четыре отчета об ошибках. Каждый протокол непрохождения проверки предназначен для отдельного диагностического кода неисправности. При установке нескольких диагностических кодов неисправностей возможна ситуация, когда для каждого кода не будет протокола непрохождения проверки.
Считывание диагностических кодов неисправности производится диагностическим сканирующим прибором. При считывании диагностических кодов неисправностей следовать инструкциям изготовителя прибора.
На легковых автомобилях с бортовой системой диагностики (OBD) имеется пять опций для отображения расширенной информации диагностических кодов неисправностей на сканирующем приборе. Описание новых режимов, информации DTC и особых DTC дается ниже. После выбора диагностического кода неисправности появляется следующее меню:
- Информация диагностического кода неисправности.
- Особый диагностический код неисправности.
- Запись состояния.
- Протоколы неисправностей (не все программы).
- Очистить информацию.
Ниже дано краткое описание каждого подменю в Информации DTC и Особом DTC. Они описаны в алфавитном порядке, но на сканирующем приборе могут появляться иначе.
Режим информации диагностического кода неисправности использовать для поиска конкретного типа сохраненной информации кода неисправности. Имеется выбор из семи вариантов. Руководство по техническому обслуживанию может дать указание мастеру проверить диагностические коды неисправности определенным способом. Всегда следовать указанным процедурам обслуживания.
Для получения полного описания любого состояния, нажать клавишу "Enter" перед нажатием желаемой функциональной клавиши. Например, нажатие клавиши "Enter", а не функциональной клавиши отобразит описание используемого сокращения статуса сканирующего прибора.
Этот выбор отобразить диагностические коды неисправности, которые не были выполнены в текущем цикле зажигания, или сообщили о неуспешной проверки в этом цикле, максимальное количество отображаемых диагностических кодов неисправности - 33. Выполненные и успешные проверку приводят к удалению этого числа с экрана сканирующего прибора.
Этот выбор отображает неуспешные диагностические коды неисправности этого цикла зажигания.
Это выбор отображает только диагностические коды неисправности, сохраненные в памяти контроллера ЭСУД. Он не отображает диагностические коды неисправностей, которые не обращались к контрольной лампе индикации неисправности. Он отображает диагностические коды неисправности всех типов А и Е, которые обращались к контрольной лампе индикации неисправности и были неуспешными в течение последних 40 циклов нагрева. Кроме того, отображаются DTC типа C, которые произошли в течении последних 20 циклов прогрева.
Этот выбор отображает неуспешные диагностические коды неисправности последней проверки. Последняя проверка могла происходить в предыдущем цикле зажигания, если отображается диагностический код неисправности типа А или Е. Для диагностических кодов неисправностей типа С последняя неуспешная проверка должна была быть пройдена в текущем цикле зажигания, чтобы быть отображенной как Last Test Fail (Неуспешные DTC в последней проверке).
Этот выбор покажет только те DTC, которые запрашивают MIL. Этот выбор сообщает о DTC типа A или E только после того, как будет запрошена MIL.
Эта опция отображает до 33 диагностических кодов неисправности, которые не проводились с момента последней очистки диагностических кодов неисправности. Так как отображенные диагностические коды неисправности не проводились, их состояние (успешное или неуспешное) неизвестно.
Этот выбор отображает все активные и архивные диагностические коды неисправности, которые сообщили о неуспешной проверке с момента последней очистки диагностических кодов неисправности. Диагностические коды неисправности, которые были неуспешными больше чем за 40 циклов нагрева до выбора этой опции, не отображаются.
Этот режим используется для проверки статуса отдельных диагностических проверок по номеру диагностического кода неисправности. Этот выбор можно сделать, если диагностический код неисправности был успешным, неуспешным или в обоих случаях. Возможны многие описания режима диагностического кода неисправности EOBD из-за большого количества информации, которую отслеживает исполнительная программа диагностики по каждой проверке. Ниже даны некоторые возможные описание с кратким пояснением.
В этом режиме клавиша "F2" используется для отображения описания диагностического кода неисправности. Клавиши "Yes" и "No" можно использовать для расширенного отображения информации о статусе диагностического кода неисправности. Этот выбор допускает ввод только тех номеров диагностических кодов информации, которые поддерживаются проверяемым автомобилем. При попытке ввести номера диагностических кодов информации, которые исполнительная программа диагностики не распознает, запрашиваемая информация не будет отображаться корректно, и сканирующий прибор может выдать сообщение об ошибке. То же самое касается использования опции запуска в режиме моментального снимка. Если введен неверный диагностический код неисправности, сканирующий прибор не запустится.
Это сообщение передает информацию о неуспешной последней проверке для выбранного диагностического кода неисправности. Для диагностических кодов неисправности типа А и Е это сообщение будет отображаться во время последующих циклов зажигания, пока не будет пройдена проверка или не будут очищены диагностические коды неисправностей. Для диагностических кодов неисправности типа С и D это сообщение будет очищено по завершении последнего цикла зажигания.
Это сообщение говорит о том, что диагностический код неисправности был неуспешным хотя бы один раз за последние 40 циклов нагрева с тех пор, когда диагностические коды неисправности были очищены.
Это сообщение говорит о том, что диагностический код неисправности был неуспешным хотя бы один раз в течение текущего цикла зажигания. Это сообщение очищается при очищении диагностических кодов неисправности или по завершении последнего цикла зажигания.
Это сообщение говорит о том, что диагностический код неисправности был сохранен в памяти как текущая неисправность. Диагностический код неисправности, отображаемый как архивная неисправность, не означает, что это неисправность отсутствует. Архивное описание означает, что все условия для сообщения о неисправности выполнены (возможно даже текущие), и что информация была сохранена в памяти модуля управления.
Это сообщение говорит о том, что диагностический код неисправности в настоящий момент приводит к включению контрольной лампы индикации неисправности. Следует помнить, что только диагностические коды неисправности типа А и Е могут обращаться к контрольной лампе индикации неисправности. Обращение к контрольной лампе индикации неисправности не может быть использовано для определения текущего наличия состояния неисправности. Это связано с тем, что исполнительной программе диагностики требуется до трех поездок с успешной диагностикой для отключения контрольной лампы индикации неисправности.
Это сообщение говорит о том, что выбранный диагностический код неисправности был неуспешным с тех пор, когда диагностические коды неисправности были очищены. Поэтому диагностический статус (успешный или неуспешный) неизвестен. После очистки диагностических кодов неисправности это сообщение будет отображаться до выполнения диагностической проверки.
Это сообщение говорит о том, что выбранный диагностический код неисправности не был выполнен в течение текущего цикла зажигания.
Это сообщение говорит о том, что выбранный диагностический код неисправности сделал следующее:
- Прошел последнюю проверку.
- Проверка выполнена и пройдена в течение текущего цикла зажигания.
- Проверка выполнена и пройдена с момента последней очистки диагностических кодов неисправности.
Если статус автомобиля отображается как "Test Ran and Passed" после проверки ремонта, это значит, что автомобиль готов для выдачи клиенту.
Если статус автомобиля отображается как "Failed This Ignition" после проверки ремонта, это значит, что ремонт не закончен, и требуются другие проверки.
До ремонта автомобиля информация о статусе может быть использована для оценки состояния диагностической проверки и в качестве помощи для идентификации неустойчивой проблемы. Мастер может сделать заключение о том, что, хотя контрольная лампа индикации неисправности и горит, состояние неисправности вызвано отсутствием необходимого кода. Причиной должно быть неустойчивое состояние.
Существует диагностика на базе первичных систем, которая оценивает работу системы и ее воздействие на токсичность. Диагностика на базе первичных систем описана ниже с кратким комментарием диагностических функций:
Управляющий датчик кислорода (HO2S1) диагностируется по следующим состояниям:
- Медленное реагирование.
- Время реагирования (время для переключения между R/L и L/R).
- Неактивный сигнал (выходной сигнал ровный при напряжении смещения ок. 450 мВ).
- Сигнал зафиксирован высоко.
- Сигнал зафиксирован низко.
Диагностический датчик кислорода (HO2S2) диагностируется по следующим состояниям:
- Работа нагревателя (время активности при холодном запуске).
- Сигнал зафиксирован низко при постоянных оборотах или работе в режиме мощностного обогащения (быстрое ускорение, когда должно отображаться обогащение смеси).
- Сигнал зафиксирован высоко при постоянных оборотах или в режиме торможения (торможение, когда должно отображаться обеднение смеси).
- Неактивный датчик (выходной сигнал ровный примерно при 438 мВ).
Если гибкий вывод, разъем или клемма повреждены, вся группа датчиков кислорода должна быть заменена. Не пытайтесь восстановить провода, разъем или клеммы. Для обеспечения нормальной работы датчика ему необходимо задать ориентир на чистый воздух. Этот ориентир задается проводами датчика кислорода. Попытка отремонтировать провода, разъем или клеммы может привести к затруднению прохождения чистого воздуха и ухудшить работу датчика кислорода.
Диагностика проверки пропуска зажигания основана на изменениях скорости вращения коленчатого вала (контрольный период). Контроллер ЭСУД определяет скорость вращения коленчатого вала с помощью датчика положения коленчатого вала (CKP) и датчика положения распределительного вала (СМР). При пропуске зажигания в цилиндре коленчатый вал мгновенно замедляется. Отслеживая датчики положения коленчатого вала и распределительного вала, контроллер ЭСУД может рассчитать время возникновения пропуска зажигания.
В случае пропуска зажигания, повреждающего каталитический нейтрализатор, потребуется диагностика, отслеживающая пропуск зажигания в пределах 1000-3200 оборотов двигателя.
В случае пропуска зажигания, не повреждающего каталитический нейтрализатор, диагностика будет реагировать на пропуск зажигания в пределах 200 оборотов двигателя
Неровная дорога может привести к ошибочному определению пропуска зажигания. Неровная дорога вызывает крутящий момент, прикладываемый к приводным колесам и приводу трансмиссии. Этот крутящий момент может временно снизить скорость вращения коленчатого вала. Это может быть ошибочно определено как пропуск зажигания.
Датчик неровной дороги или датчик G работает вместе с системой определения пропуска зажигания. Датчик G выдает сигнал, изменяющийся вместе с интенсивностью дорожной вибрации. Когда контроллер ЭСУД определяет неровную дорогу, система определения пропуска зажигания временно отключается.
Когда цилиндр пропускает зажигание, диагностика пропуска зажигания подсчитывает пропуски и регистрирует положение коленчатого вала в момент пропуска зажигания. Эти "счетчики пропусков зажигания" являются по существу регистраторами на каждом цилиндре. Текущие и архивные счетчики пропуска зажигания ведутся для каждого цилиндра. Текущие счетчики пропусков зажигания (Misfire Cur #1–4) отображают количество зажиганий из 200 зажиганий цилиндра, которые были с пропусками. Текущий счетчик пропусков зажигания отображает данные в реальном времени без сохранения диагностических кодов неисправности пропуска зажигания. Архивные счетчики пропусков зажигания (Misfire Hist #1–4) отображают общее количество зажиганий, которые были с пропусками. Архивные счетчики пропусков зажигания отображают 0, пока не пройдет диагностика пропуска зажигания, и не будет установлен код DTC P0300. После установки DTC P0300 архивные счетчики пропусков зажигания будут обновляться через каждые 200 зажиганий. Счетчики пропуска зажигания ведутся для каждого цилиндра.
Если диагностика пропусков зажигания выдает неисправность, исполнительная программа диагностики проверят все счетчики пропусков зажигания перед сообщением о диагностическом коде неисправности. Таким образом, исполнительная программа диагностики сообщает самую актуальную информацию.
Если вращение коленчатого вала сбойное, то определяется пропуск зажигания. Из-за этого сбойного состояния данные, собираемые диагностикой, могут иногда неверно указать, в каком цилиндре происходит пропуск зажигания.
Использовать диагностическое оборудование для отслеживания данных пропуска зажигания на OBD-совместимых автомобилях. Зная, в каком цилиндре(ах) пропускается зажигание, можно локализовать цепочку, даже имея дело с множественным пропуском зажигания. Используя информацию счетчиков пропусков зажигания, определить, какой цилиндр пропускает зажигание. Если счетчики определяют пропуски зажигания в цилиндрах 1 и 4, найти общую цепь или компонент для обоих цилиндров 1 и 4.
Диагностика пропусков зажигания может определить временную неисправность, которая не обязательно связана с неисправностью системы контроля токсичности. Возможные причины:
- Загрязненное топливо.
- Низкий уровень топлива.
- Залитые свечи зажигания.
- Общая неисправность двигателя.
Эта система отслеживает средние значения краткосрочной и долгосрочной корректировки топливоподачи. Если эти значения корректировки топливоподачи останавливаются на предельных параметрах в течение заданного времени, то отображается неисправность. Диагностика корректировки топливоподачи сравнивает средние значения краткосрочной и долгосрочной корректировки топливоподачи с пороговыми значениями обогащенной и обедненной топливной смеси. Если хотя бы одно из значения находится в пределах порога, фиксируется нормальное состояние. Если оба значения выходят за предельные параметры, фиксируется диагностический код неисправности обогащения или обеднения смеси.
Диагностика корректировки топливоподачи также выполняет проверки с изменением режимов работы. Проверка определяет, вызвано ли обогащенное состояние чрезмерными парами бензина в адсорбере СУПБ. Чтобы соответствовать требованиям OBD, модуль управления использует взвешенные корректировочные топливные ячейки для определения необходимости установки диагностического кода неисправности корректировки топливоподачи. Диагностический код неисправности корректировки топливоподачи устанавливается только в том случае, если значения счетчиков корректировки топливоподачи во взвешенных корректировочных ячейках превышают технические характеристики. Это значит, что автомобиль может иметь проблему корректировки топливоподачи, которая при определенных условиях вызывает другие проблемы (напр., высокая частота вращения на холостом ходу из-за небольшой утечки вакуума или неровный холостой ход из-за большой утечки вакуума), причем в другое время автомобиль работает нормально. Не будет установлен диагностический код неисправности корректировки топливоподачи (хотя DTC частоты вращения на холостом ходу или датчика кислорода HO2S2 могут быть установлены). Использовать сканирующий прибор для наблюдения за счетчиками корректировки топливоподачи в момент наличия проблемы.
Диагностический код неисправности корректировки топливоподачи может быть вызван несколькими неисправностями автомобиля. Использовать всю имеющуюся информацию (другие сохраненные диагностические коды неисправности, обедненная или обогащенная смесь) при диагностике неисправности корректировки топливоподачи.
Диагностический код неисправности корректировки топливоподачи не будет установлен, независимо от счетчика корректировки топливоподачи в ячейке 0, если только счетчик во взвешенных ячейках не окажется за пределами технических характеристик. Это значит, что автомобиль может иметь проблему корректировки топливоподачи, которая при определенных условиях вызывает другие проблемы (напр., высокая частота вращения на холостом ходу из-за небольшой утечки вакуума или неровный холостой ход из-за большой утечки вакуума), причем в другое время автомобиль работает нормально. Не будет установлен диагностический код неисправности корректировки топливоподачи (хотя DTC частоты вращения на холостом ходу или датчика кислорода HO2S2 могут быть установлены). Использовать сканирующий прибор для наблюдения за счетчиками корректировки топливоподачи в момент наличия проблемы.